Alltaf, stundum eða aldrei satt?

Er eftirfarandi jafna alltaf sönn, stundum sönn eða aldrei sönn? Við hugsum okkur hér að bókstafirnir a og b séu tölur.

\frac{a}{b}=\frac{b}{a}

Ef hún er alltaf eða aldrei sönn, útskýrðu hvers vegna. Ef hún er stundum sönn, gefðu dæmi um það, og gerðu tæmandi grein fyrir öllum slíkum dæmum ef þú getur.

Með því að setja fram fullyrðingar, eins og til dæmis jöfnur, með þessum hætti, í stað þess að leggja fyrir verkefni eins og „leystu jöfnuna …“ gerist eitthvað sem er dálítið merkilegt. Sérstaklega ef nemendur eiga að svara spurningunum í litlum hópum. Í stað þess að annaðhvort byrja að „reikna“ samkvæmt einhverjum (oft hálfgleymdum eða óljósum) reglum, eða gefast upp vegna þess að þeir „vita ekki hvernig þeir eiga að leysa þetta“, þá skapast samræður og pælingar. Nemendur fara jafnvel að prófa einhverjar tölur.

Þetta form á spurningu er eitt af því sem ég kynntist hjá breskum fræðimönnum í stærðfræðimenntun, man ekki hvort ég sá þetta fyrst hjá John Mason eða Malcolm Swan.

Ég lagði verkefni fyrir tvo fyrstu bekki á náttúrufræðibraut í síðustu viku, sem var ekkert annað en listi af fullyrðingum sem þau áttu að meta á þennan hátt. Að vísu má segja að ég sé að teygja aðeins á rökfræðinni í „ef … þá“ fullyrðingum. Því hvað þýðir að slík fullyrðing sé stundum sönn? Hugmyndin er að ef maður gefur sér einhverjar fleiri forsendur geti annars röng fullyrðing orðið sönn (smellið á mynd til að stækka).

Screen Shot 2013-09-15 at 15.14.37 PM

Ég gæti kennt allan áfangann sem lista af svona fullyrðingum. (Sé reyndar að síðasta verkefnið er ekki svona fullyrðing!)

ps. Um upphaflegu jöfnuna: reynslan sýnir að ein leið til að gera jöfnuna sanna kemur mörgum ekki í hug, möguleikinn a=b er ekki sá eini.

Föndurverkefni um föll

Í stað þess að eyða tímanum í að þjálfa nemendur í að herma eftir reiknitækjum (til að ná færni í því að umbreyta táknarunum innan sama framsetningarháttar) vil ég að nemendur búi til tengingar milli framsetningarkerfa, meðal annars milli framsetninga á aðstæðum á tiltölulega vernjulegu tungumáli og framsetninga á stærðfræðitáknmáli svo og framsetninga eins og línurita. Eitt verkefni sem nemendur (1. bekk á félagsvísindabraut) gerðu í vikunni, var að klippa út, flokka og para saman ólíkar framsetningar á föllum. Þeir fengu eftirfarandi blöð, og áttu að klippa út miðana:

Screen Shot 2013-09-07 at 16.44.15 PM

Screen Shot 2013-09-07 at 16.44.38 PM

Screen Shot 2013-09-07 at 16.45.38 PM

Screen Shot 2013-09-07 at 16.45.06 PM

Athugið að það vantar nokkrar framsetningar og að það getur verið að tvær framsetningar innan sama háttar séu jafngildar.

Nemendur á þessu stigi þurfa dálítinn stuðning og samræðu við kennara til að ráða fram úr þessu, en með því að tala saman náðu þeir að gera þetta mjög vel. Þeir notuðu líka reikni- og teiknivélina Desmos (á tölvum og/eða símum) til að aðstoða sig. Ég birti hérna eina lausn (við skiptum þessu á tvö plaköt, svo hér eru bara tveir framsetningarhættir tengdir saman.)

Lausn_klippa_lima_foll

Krotað er yfir nöfn nemenda…

(Fyrir þá smámunarsömu: Það mætti gagnrýna örfá línurit fyrir að sýna gildi sem hafa ekki merkingu í samhengi við textann (t.d. neikvæðar hliðarlengdir.))

Nú þarf ég að setja meiri fókus á það hvernig nemendur geta unnið saman þannig að þeir læri sem mest og allir fái að vera með, þau æfi sig í að hlusta og ræða um hugmyndir hvers annars.

Táknmál mengjafræðinnar

Stundum les ég eða heyri fólk segja að kennarar eigi að „gera efnið áhugavert“. Gott ef þetta var ekki útvarpinu í gær, og þá var talað um dönskukennslu. Ég held að þetta sé ekki góð nálgun. Samt er ég að hugsa um það hvernig hægt sé að finna áhugaverðan flöt á námsefni um einfalda mengjafræði, þó að „fræði“ sé reyndar full mikið heiti á einhverju sem er eiginlega eingöngu um nafna- og ritháttarvenjur. Gullna reglan um stærðfræðikennslu er að spyrja þeirra spurninga sem gera sköpun þeirrar þekkingar sem að er stefnt óumflýjanlega í stað þess að kynna þekkinguna á undan spurningunum (eða það sem algengara og verra er: án þess að spurningarnar komi nokkuð við sögu). Ef þetta er of klúðurslega eða knappt orðað má fara hægar gegnum þetta:

„Hefðbundin stærðfræðikennsla“ felst í því að fyrst eru kynnt hugtök og aðferðir og svo æfa nemendur sig í að nota hugtökin og aðferðirnar með því að leysa til þess gerð verkefni. Verkefnin eru miserfið og djúp en þau eru í flestum tilfellum án snertiflatar við hinn ytri heim eða þau vandamál sem hugtökin og aðferðirnar voru þróuð til að leysa. Oft eru verkefnin eingöngu æfing í að umbreyta einni runu af táknum í aðra runu af táknum innan sama táknkerfis, samkvæmt einhverjum reglum (aðferðum). Nemendur geta sumir náð góðum tökum á þessu án þess að hafa nokkra hugmynd um það til hvers hugtökin eða aðferðirnar eru, hvaða öðrum hugtökum og aðferðum þau tengjast, eða til hvers þær eru. Reyndar eru þessi tök oft fljót að gleymast, eins og eðlilegt er um „þekkingu“ sem hefur enga merkingu (það er, engin tengsl við aðra þekkingu eða reynslu).

Yfirleitt er hægt að byrja á spurningu (eða spurningum) sem eru eðlilegar og áhugaverðar í sjálfu sér og eru ekki spurningar um þau stærðfræðihugtök eða aðferðir sem nemendur eiga að læra heldur eitthvað annað. Ég er samt ekki að meina endilega hversdagslega hluti eða mjög hagnýta hluti – þær geta meira að segja verið um stærðfræði, en þá um stærðfræði sem er nemendum mjög vel kunn.

Nú er ég að kenna stærðfræði í framhaldsskóla og áfangalýsingin og áætlunin gerir ráð fyrir að ég kenni fyrsta árs nemendum um táknmál mengjafræðinnar. Mitt kalda sérfræðimat á því er að það sé fáránlegt. Þetta táknmál er fullkomlega óþarft á þessu stigi og er ekki svar við neinum spurningum sem nemendur hafa eða hægt er að vekja með þeim. Ef einhver þekkir slíka spurningu má viðkomandi láta mig vita. (Tek fram að það er ekkert mál að spyrja áhugaverðra spurninga um mengi, til dæmis um fjölda í óendanlegum mengjum af ýmsu tagi, eða heimspekilegra spurninga eins og um mengi allra mengja, þversögn Russels og svo framvegis, en það er ekki efnið.)

Nú ætla ég að opna mig meira um eigin kennslu en mér finnst þægilegt og gagnrýna námsefnið, sem er að finna í bókinni STÆ 203 eftir Jón Hafsteinn Jónsson, Níels Karlsson, Stefán G. Jónsson. Í fyrsta „verkefnakafla“ er fyrsta verkefnið eftirfarandi:

verkefni1_mengi

„Merkið 1 við réttar staðhæfingar og 0 við rangar.“ Really?

Rödd stærðfræðingsins í mér segir: „já fínt, þetta er bara um það að læra nákvæmni í meðferð einfaldra tákna. Ef maður skilur táknin er þetta ekkert mál, reglurnar um meðhöndlun þeirra eru ótvíræðar“. Rödd stærðfræðimenntunarfræðingsins (í tilfinningalegu uppnámi) segir: „það er ekki ein einasta vitglóra í því að láta 16 ára nemendur fást við að læra táknmál sem hefur engan tilgang fyrir þá og tekur tíma frá því að kljást við bitastætt stærðfræðilegt innihald, að greina, skapa, rökstyðja (sanna), að tengja stærðfræði við aðra hluti, að nota stærðfræði til að svara áhugaverðum spurningum. Það er deginum ljósara að margir nemendur eiga erfitt með þetta vegna þess að þetta er ekki um neitt og hjálpar þeim ekki að skilja neitt. Og þó að margir geti „náð þessu“ þá geta þeir ekki náð því til hvers þetta er, vegna þess að svarið við því er: ekki til neins.“ Í alvöru talað, að æfa formlegan rithátt í stað þess að glíma við innihald: fyrstu kynni nemenda í framhaldsskóla af stærðfræði! Ég gæti grátið.

Í stað þess að gráta hef ég hins vegar búið til verkefni sem fær nemendur til þess að tala saman og byggir á hönnun eftir Malcolm Swan. Það gengur út á að læra að túlka og umbreyta af einu framsetningarformi (e. mode of representation) yfir á annað (og tilbaka) – sem er lykilatriði í stærðfræðinámi til skilnings. Það er mun mikilvægara fyrir skilning en umbreyting innan sama framsetningarforms (sem hefur eins og áður sagði miklu meira vægi í hefðbundinni stærðfræðikennslu.)

Nemendur fá blöð með tvenns konar framsetningum á mengja-aðgerðum. Önnur framsetningin er teikning af hringjum, sem er eins konar „íkonísk“ framsetning, þ.e. teikningin „samsvarar“ aðstæðunum sem hún sýnir. Hitt er mengjatáknmál, sem er táknræn framsetning, þ.e. það er ekkert við táknin sjálf sem segir hvað þau merkja. Nemendur eru þrjú og þrjú saman og þau klippa út miða og para saman framsetningar og líma á plakat. Sums staðar á sama framsetning á einu formi við um tvö á öðru og sums staðar vantar framsetningu á einu forminu. Þá eiga nemendur að búa hana til sjálfir. Hér eru blöðin á myndaformi (nenni ekki að setja pdf hér og nú.)

Screen Shot 2013-08-28 at 21.04.41 PM

Screen Shot 2013-08-28 at 21.04.20 PM

 

Svona ef einhver kynni að vilja prófa þetta.